Divisible design graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisible design graphs

A divisible design graph is a graph whose adjacency matrix is the incidence matrix of a divisible design. Divisible design graphs are a natural generalization of (v, k, λ)-graphs, and like (v, k, λ)-graphs they make a link between combinatorial design theory and algebraic graph theory. The study of divisible design graphs benefits from, and contributes to, both parts. Using information of the e...

متن کامل

Walk-regular divisible design graphs

A divisible design graph (DDG for short) is a graph whose adjacency matrix is the incidence matrix of a divisible design. DDGs were introduced by Kharaghani, Meulenberg and the second author as a generalization of (v, k, λ)-graphs. It turns out that most (but not all) of the known examples of DDGs are walk-regular. In this paper we present an easy criterion for this to happen. In several cases ...

متن کامل

Divisible Groups Derived from Divisible Hypergroups

The purpose of this paper is to define a new equivalence relation τ∗ on divisible hypergroups and to show that this relation is the smallest strongly regular relation (the fundamental relation) on commutative divisible hypergroups. We show that τ∗ ̸= β∗, τ∗ ̸= γ∗ and, we define a divisible hypergroup on every nonempty set. We show that the quotient of a finite divisible hypergroup by τ∗ is the tr...

متن کامل

New Digital Fingerprint Code Construction Scheme Using Group-Divisible Design

Combinatorial designs have been used to construct digital fingerprint codes. Here, a new constructive algorithm for an anticollusion fingerprint code based on group-divisible designs is presented. These codes are easy to construct and available for a large number of individuals, which is important from a business point of view. Group-divisible designs have not been used previously as a tool for...

متن کامل

Minimal p-divisible groups

Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1[p] ∼= X2[p]; however, conversely X1[p] ∼= X2[p] does in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2011

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2010.10.003