Divisible design graphs
نویسندگان
چکیده
منابع مشابه
Divisible design graphs
A divisible design graph is a graph whose adjacency matrix is the incidence matrix of a divisible design. Divisible design graphs are a natural generalization of (v, k, λ)-graphs, and like (v, k, λ)-graphs they make a link between combinatorial design theory and algebraic graph theory. The study of divisible design graphs benefits from, and contributes to, both parts. Using information of the e...
متن کاملWalk-regular divisible design graphs
A divisible design graph (DDG for short) is a graph whose adjacency matrix is the incidence matrix of a divisible design. DDGs were introduced by Kharaghani, Meulenberg and the second author as a generalization of (v, k, λ)-graphs. It turns out that most (but not all) of the known examples of DDGs are walk-regular. In this paper we present an easy criterion for this to happen. In several cases ...
متن کاملDivisible Groups Derived from Divisible Hypergroups
The purpose of this paper is to define a new equivalence relation τ∗ on divisible hypergroups and to show that this relation is the smallest strongly regular relation (the fundamental relation) on commutative divisible hypergroups. We show that τ∗ ̸= β∗, τ∗ ̸= γ∗ and, we define a divisible hypergroup on every nonempty set. We show that the quotient of a finite divisible hypergroup by τ∗ is the tr...
متن کاملNew Digital Fingerprint Code Construction Scheme Using Group-Divisible Design
Combinatorial designs have been used to construct digital fingerprint codes. Here, a new constructive algorithm for an anticollusion fingerprint code based on group-divisible designs is presented. These codes are easy to construct and available for a large number of individuals, which is important from a business point of view. Group-divisible designs have not been used previously as a tool for...
متن کاملMinimal p-divisible groups
Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1[p] ∼= X2[p]; however, conversely X1[p] ∼= X2[p] does in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2011
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2010.10.003